
Page 1

TM
®

The NT Insider
The only publication dedicated entirely to Windows® system software development

A publication by OSR Open Systems Resources, Inc. Not endorsed by or associated with Microsoft Corporation.

September—October 2011 Digital Edition Volume 18 Issue 3

Epic Update:
Win8 WDK Provides Visual
Studio Integration
I n case you haven’t been paying

attention to what’s been going on in

preparation for the next version of

Windows, back on 13 September

Microsoft held the long-awaited

―Build‖ developer conference. As

promised the conference gave the

general public its first glimpse of

Windows 8, dubbed the ―Windows

Developer Preview.‖ For most folks

who work in the world of Windows this

was pretty big news.

What was even bigger news for those of

us involved in writing Windows drivers

was the introduction of the next version

of the Windows Driver Kit (WDK).

For the past many years, we’ve grown

to expect a WDK that looks pretty

much like the previous WDK. Maybe

there are a few more driver models.

Perhaps there are some more DDIs

added to KMDF and UMDF. And we

always expect the documentation to

continue its slow progression from

useable to useful.

However, if you were expecting ―more

of the same‖ for this release of the

WDK you were in for a very, very, big

– enormous – surprise. The new WDK

is nothing like the old one. In fact, the

new WDK incorporates the number one

feature requested by the driver

development community over the past

ten years: The Windows 8 WDK has

been changed to be fully integrated with

Visual Studio.

No, I’m not kidding. Seriously. We’ve

finally gotten full Visual Studio

integration. And it’s not just simple

―invoke a command procedure as an

external build step‖ integration, either.

What we got was actual, real,

integration including choices for

different driver starter projects, built-in

PREfast, the ability to fire-up SDV to

run (asynchronously, thank goodness)

from within the VS IDE, and even

integration with the kernel debugger.

And, if that’s not enough, the Win8

WDK also includes support for

automated deployment of your driver.

If enabled, when you hit F5 your driver

is rebuilt (if it’s out of date), copied to

the test system you’ve previously

indicated, installed on that test machine,

and started. You can choose to

automatically enable Driver Verifier if

you want. You can even configure a set

of tests to start automatically.

Perhaps that’s not enough to excite you.

How about automatically signing your

driver for you, if you choose? Yup, you

can select from test signing or

production signing. If you choose test

signing you can optionally have a test

certificate automatically generated for

you, or you can choose an existing test

cert. You can even choose a timestamp

server to use during the signing process,

without having to remember the URL

(the paths to the Verisign and

Globalsign time stamp servers are built

in). And, yes… the WDK comes

(Continued on page 22)

Windows
Developer Preview:
Where to Get It

W ith the Build conference behind

us finally and the Windows

Developer Preview (i.e., Windows 8)

now available, let’s take a moment to

make sure you all know where to go

for it, and associated kits and tools.

You can access the Win8 Developer

Preview at the Windows Dev

Center—Hardware:

http://msdn.microsoft.com/en-us/

windows/hardware

In addition to the Win8 preview, you

can gain access to the WDK, the

Visual Studio 11 Developer Preview,

and other associated test and

dep lo yment k i t s v ia MSDN

Downloads (for MSDN subscribers).

Note also that there have been some

great discussions about Win8 and the

integration of the WDK and Visual

Studio in the NTDEV newsgroup:

http://www.osronline.com/cf.cfm?

PageURL=showlists.cfm?

list=NTDEV

Seminar Schedule

Windows Internals & SW Drivers
Kernel Debugging/Crash Analysis

Writing WDM Drivers
Windows Internals for Forensic

Analysts
For more information, visit
www.osr.com/seminars.

http://msdn.microsoft.com/en-us/windows/hardware
http://msdn.microsoft.com/en-us/windows/hardware
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=NTDEV
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=NTDEV
http://www.osronline.com/cf.cfm?PageURL=showlists.cfm?list=NTDEV
http://www.osr.com/seminars
http://www.osr.com/swdrivers.html
http://www.osr.com/debug.html
http://www.osr.com/wdm.html
http://www.osr.com/forensics.html
http://www.osr.com/forensics.html
http://www.osr.com/seminars

Page 2

The NT Insider™

Published by
 OSR Open Systems Resources, Inc.
 105 Route 101A, Suite 19
 Amherst, New Hampshire USA 03031
 (v) +1.603.595.6500 (f) +1.603.595.6503

 http://www.osr.com

Consulting Partners
 W. Anthony Mason
 Peter G. Viscarola
Executive Editor
 Daniel D. Root
Contributing Editors
 Mark J. Cariddi
 Scott J. Noone
 OSR Associate Staff
Consultant At Large
 Hector J. Rodriguez
Send Stuff To Us:
 email: NtInsider@osr.com

Single Issue Price: $15.00

The NT Insider is Copyright ©2011. All rights reserved.

No part of this work may be reproduced or used in any

form or by any means without the written permission of

OSR Open Systems Resources, Inc. (OSR).

We welcome both comments and unsolicited manuscripts

from our readers. We reserve the right to edit anything

submitted, and publish it at our exclusive option.

Stuff Our Lawyers Make Us Say
All trademarks mentioned in this publication are the

property of their respective owners. ―OSR‖, ―The NT

Insider‖, ―OSR Online‖ and the OSR corporate logo are

trademarks or registered trademarks of OSR Open Systems

Resources, Inc.

We really try very hard to be sure that the information we

publish in The NT Insider is accurate. Sometimes we may

screw up. We’ll appreciate it if you call this to our

attention, if you do it gently.

OSR expressly disclaims any warranty for the material

presented herein. This material is presented ―as is‖ without

warranty of any kind, either expressed or implied,

including, without limitation, the implied warranties of

merchantability or fitness for a particular purpose. The

entire risk arising from the use of this material remains with

you. OSR’s entire liability and your exclusive remedy shall

not exceed the price paid for this material. In no event shall

OSR or its suppliers be liable for any damages whatsoever.

It is the official policy of OSR Open Systems Resources,

Inc. to safeguard and protect as its own, the confidential

and proprietary information of its clients, partners, and

others. OSR will not knowingly divulge trade secret or

proprietary information of any party without prior written

permission. All information contained in The NT Insider

has been learned or deduced from public sources...often

using a lot of sweat and sometimes even a good deal of

ingenuity.

OSR is fortunate to have customer and partner relations that

include many of the world’s leading high-tech organiza-

tions. As a result, OSR may have a material connection

with organizations whose products or services are dis-

cussed, reviewed, or endorsed in The NT Insider.

Neither OSR nor The NT Insider is in any way endorsed by

Microsoft Corporation. And we like it that way, thank you

very much.

Inside This Issue:

Epic Update: Win8 WDK Provides Visual Studio Integration 1

OSR Page: Of ARM, SoC and “Big Windows” 3

Peter Pontificates: Do Christmas Dreams Come True? 4

WDK Preview: Installation Through Debugging 6

But Wait...There’s More! Win8 and WDK Changes You’ll Care About 8

Five Things to Like: Visual Studio Integration 10

Five Things to Not Like: Visual Studio Integration 11

Windows 8 Preview: File System Changes 12

Windows 8 WDK—Converting “Sources.” Based Projects to “.vcxproj” 16

OSR Seminar Schedule 32

Page 3

The NT Insider—Digital Edition

If you are new to The NT Insider (as in, the link to this issue was forwarded to you), you can subscribe at:

http://www.osronline.com/custom.cfm?name=login_joinok.cfm.

OSR Page: Of ARM, SoC and “Big Windows”

Peer Help?
Writing and debugging Windows system software isn’t easy. Sometimes, connecting with the right people at the
right time can make the difference. You’ll find them on the NTDEV/NTFSD/WINDBG lists hosted at OSR Online
(www.osronline.com)

T he movement of mobile devices (e.g., tablets,

etc.) over to the Windows space has made for

interesting work for the team here at OSR as of late.

After all, it’s not often we get to become involved

in bringing large teams of architects and developers

over to the world of Windows.

Surely, much of this is due to the overall interest in

the mobile market, but it’s hard to say that the

single biggest impetus for this isn’t the promise of

Windows—and by ―Windows‖ I don't mean,

WinCE, Windows Mobile/Phone7 — increasing its

breadth of support for mobile devices. I mean (as it

was first described to us by a client) ―big

Windows‖.

Future support in Windows 8 for ARM and SoC

based systems is, frankly, exciting. But it’s

challenging work. Whether we’re working with

ARM and SoC vendors, or device or solution

providers further down the line that need to support

ARM or SoC on Windows, we’ve found the

experience enlightening.

You have, on one hand, the challenges of breaking

existing mindsets. After all, Windows is, um,

―different‖, from WinCE/Mobile/Phone7.

In addition, we are finding that (go figure), the devs

from an SoC or ARM background that come to us

to learn about Windows architecture are keenly

focused on implementation details when it comes to

support for their specific device on Windows.

On the other hand, this work is keeping us on our

toes. The folks we’ve had the pleasure to teach and

consult with are very much ―non null‖, and bring a

great deal of experience and expertise from ―their

world‖ to our work with them. This makes for some

pretty cool discussions.

So hey, if you’re in the mobile space and are

interested in working with OSR to help move your

team of architects/developers over to ―big

Windows‖, we look forward to hearing from you!

http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/page.cfm?name=ListServer

Page 4

Note, too, that the new VS-integrated WDK actually does

more than what I asked for on my list. Not only are the driver

coding and debugging processes integrated, but so are the

signing, deployment, and testing processes built into this same

environment. This is a level of integration that I, quite

frankly, didn’t even think to ask for. So, kudos to the WDK

team on reaching beyond what I had hoped.

But I didn’t only ask for a new, VS integrated, WDK build

environment, I also wished for backward compatibility with

BUILD. I wrote:

I need to be able to build driver projects seamlessly in

either VS or using “build” without any inconvenience. I

need to be able to seamlessly “round trip” between VS

and traditional build, so that any files I add to a

“sources” file are easily (or, better yet, automatically)

included in my VS project, and any files that I add to my

VS project easily (or, better yet, automatically) show up

in my sources file.

This is a wish that has not come true. And that’s a darn

shame. While we understand that we all face resource

constraints, I think this is a feature that’s far too important to

be ―below the line‖ and not implemented.

Why is it important to be able to ―round trip‖ between the old

build environment and the new VS integrated environment?

One reason is that this would allow us to support ―down level‖

build environments much more easily. In case you didn’t

notice, the Win8 WDK does not support building drivers that

are targeted for Windows XP. If you’re like us here at OSR,

you still need to support Windows XP and probably Windows

2000 as well. This means that you’ll have to manage and

support two entirely separate build environments that use

(Continued on page 5)

Peter Pontificates:
Do Christmas Dreams Come True?
B ack in November 2009, I wrote a Christmas list

describing my hopes and dreams for the future of

Windows driver development (see What I Want for Christmas

(2011)). Since the release of the Windows Developer

Preview, a number of people have asked me how the Win8

WDK stacks up against that list. So, let’s see!

The first and most important item on my Christmas wish list

was a driver development environment that was integrated

with Visual Studio. I wrote (in part):

While the VS editor might suck ass (might?) there are

just too [many] useful things in VS to ignore it any

longer. Too many add-ins. Too many features. So, I

want a driver development environment that’s both

supported by Microsoft and fully integrated with the VS

IDE. This means I want VS to be able to successfully

parse ntifs.h (and his include files), reasonably handle

the conditionals therein, and provide me IntelliSense, F1

for help, and all the other VS features and wonderments.

I want the various VS add-ins that provide cool features

such as smart refactoring (including the ability to

rename variables in a project… man, do you have any

idea how great that is) to work properly.

I need the VS IDE to front-end the kernel debugger,

preserving all its features, so I don’t have to suffer the

slings and arrows of WinDbg’s arbitrary behavior.

It seems that this wish, my first and most important wish, has

come true. We finally have a WDK that is fully integrated

with Visual Studio. And while there’s certainly room for a bit

of smoothing out of that integration, what we’ve seen in the

Win8 WDK and VS11 is pretty much the core of what I asked

for.

Design & Code Reviews

Have a great product design, but looking for extra security to validate internal operations before bringing it to
your board of directors? Or perhaps you’re in the late stages of development of your driver and are looking to
have an expert pour over the code to ensure stability and robustness before release to your client base.

A small investment in time and money in either service can “save face” in front of those who will be contributing
to your bottom line. OSR has worked with both startups and multi-national behemoths. Consider what a team of
internals, device driver and file system experts can do for you. Contact OSR Sales — sales@osr.com.

http://www.osronline.com/downloads/pp_xmas2011.pdf
http://www.osronline.com/downloads/pp_xmas2011.pdf
http://www.osr.com/code_review.html
mailto:sales@osr.com

Page 5

entirely separate sets of project metadata. Which totally and

completely sucks. When you add a file to your project,

change the compiler flags, or define some new preprocessor

value, you’ll need to do this in two separate places: You’ll

need to do it in VS for your new Vista and later build

environment and you’ll need to do it in your sources file for

your XP build environment.

However, having to maintain two entirely separate build

environments is not the only reason that not having the ability

to ―round trip‖ between VS and sources is important. The

most important reason is that the ability to convert from

sources to VS and back to sources again allows you to check

that your driver project was properly converted. Unless you

happen to be a Visual Studio and/or MSBUILD expert, when

you import or convert your driver project into the Win8 WDK

environment, you’ll have no clue if the import was done

correctly. Sure, you’ll be able to tell if the resultant project

builds and runs. But that doesn’t necessarily mean all the

little settings you painstakingly established in your sources

file have been properly brought forward. Given that you do

understand the build/sources system, if you had the ability to

convert your project to VS and then back again, you’d at least

be able to check to see if the project is the same as the one you

converted.

So, in summary… for my first and most important

Christmas wish for Visual Studio integration, I got about

85% of what I asked for. Plus, I got a bunch of stuff (like

automated signing, deployment, and testing) that I didn’t

even think to ask for. Darn good work, by anybody’s

standards.

The next thing I asked for was DMA virtualization. I wrote:

I want to see DMA scribbles eliminated for all time.

IOMMUs are here, and I want Windows to use them.

For all DMA operations. This would also mean that I

can stop writing articles about why people need to use

Map Registers and not just call MmGetPhysical

Address; and you, dear reader, would be saved from

having to read those articles.

I still think this is a laudable goal. Unfortunately, I’m not

aware of any details that have been made public about DMA

virtualization in Win8.

So we’ll have to mark this particular wish, DMA

Virtualization, as “wait and see.”

The third item of which I dreamed was a more advanced,

cleaner, architecturally more complete and rigorous KMDF. I

wrote (again, in part):

(Continued from page 4)

What we have from KMDF today is not enough. I want

the next major revision of KMDF [with] aggressive,

continued, forward architecture and development.

I want the rough edges smoothed out. I want somebody

with a solid knowledge of driver development, and a

broad architectural view, to spend serious time

reviewing KMDF with the goal of making the level of

abstraction consistent, and on average, just a bit higher

than it is today. [And] I want KMDF to include a new

set of features and extensions that ease common

programming patterns.

My wish list actually described several specific things that I

hoped would be changed, enhanced, and smoothed out in

KMDF.

When I wrote this, I quite frankly didn’t expect that I’d get it.

And my expectations were met. There are a few very nice

tweaks to KMDF in this new release of Windows, but in

general, KMDF remains what it was. I’m sure I know why

this is: The KMDF/UMDF group was plenty busy adding

other features. But, as much as I like KMDF – and as I said

back in the original article, I am a major KMDF fan – KMDF

remains a good, but sometimes disappointingly ragged and

incomplete, framework. The most coherent and compelling

part of KMDF is its elegantly simple, integrated

implementation of PnP and Power Management. And while

this alone makes KMDF worth using, there is so much more

that KMDF could be. The abstractions could be so much

more coherent and clear. The ease-of-use could be so much

greater. And I don’t think it would take that much work to

elevate KMDF from ―good‖ to ―really really great‖ – I just

wish somebody with adequate time and vision would step-up

and get this done. Maybe what Microsoft needs to do is hire

OSR to sketch out a vision for this. Give me a call anytime,

guys. You have my number :-)

A dynamically advanced and cleaned-up KMDF? Not in

Win8. So this wish remains unfulfilled.

Another item that was on my Christmas list that I didn’t get,

and that I’m not surprised at, was a new implementation of

UMDF. My original request was:

I would like the ability to take my KMDF driver

unchanged and compile it for use in either user mode

or kernel mode. I very strongly believe that having

entirely different programming models for user-mode

and kernel-mode unnecessarily complicates WDF and

actively hinders the movement of drivers out of the OS.

But, as far as I know, there’s been no work done in this area at

all for Win8.

So, in terms of our getting an integrated KMDF and

UMDF, the answer for Win8 is no.

(Continued on page 29)

Peter Pontificates...

Page 6

debug requires that the VS debugger application run without

being elevated. If UAC is disabled on the host, there will be

no easy way to guarantee this and will therefore result in

strange errors when it comes time to debug.

We strongly urge you to install the 32-bit build of VS2011.

We were unsuccessful in our attempts to get the WDK

properly integrated with the x64 build of VS2011, so don’t

waste your time. As long as you’re using the 32-bit build of

VS2011, installation of the WDK should be painless. Simply

run \wdksetup.exe from the downloaded package and you’re

on your way.

As part of your host system configuration, it is strongly

recommended that you assign the host a static IP. This is

solely because we’ll be using the network as our debug

protocol and, in doing so, we’ll be providing the host

machine’s IP as part of the debug settings. Failure to use a

static IP may result in unexpected loss of the debug

connection if the host’s IP changes at any point.

Configure Target through VS2011 on Host
For this article, we’ll forego using any project and just worry

about getting VS to configure and connect to the target

machine.

Even though we’ve explicitly told you in this article to leave

UAC enabled on the host, in order to remotely configure the

target machine you will need to run VS

elevated on the host. This is a known

restriction in the kit that may be

addressed in the future and will not

interfere with your ability to do network

kernel debugging.

Once you’ve launched an elevated

instance of VS, instruct it to attach to a

process via the Debug->Attach to

Process menu item, as seen in Figure 1.

This will bring up the process attachment

dialog which, if you’ve done everything

correctly up to this point,

should have a couple of

new debuggers to choose

from. We’ll be using the

Windows Kernel Mode

Debugger, as seen in

Figure 2.

(Continued on page 7)

I f you haven’t yet had the opportunity to install the WDK

from the Windows Developer Preview, we thought we’d

provide you some guidance on installing the WDK and

configuring a target machine for network debugging.

Hopefully, when you decide to give it a spin, this guide will

get you up and running a bit more quickly.

Install the Win8 Dev Preview on Target
The first step is to get Win8 installed on your target machine.

For our testing, we’ve used a mix of real systems and virtual

machines. For the writing of this article, VMWare

Workstation 8 was used for both the host machine and the

target machine.

To properly prepare your target machine, make sure that you

create a local administrator account with a non-blank

password. More importantly, once the installation is complete

be sure to disable UAC! Failure to do so will lead to access

denied errors on the host when trying to remotely configure

the target.

Configure Host Machine
You can choose any host system that you like, though for this

article we’re using a 32-bit install of Win8. Once you’ve

chosen your host, you need to install VS2011 and the WDK,

both of which are available through the MSDN Subscriber

Downloads. Unlike on the target machine, it is very important

that you do not disable UAC on the host. Currently, network

WDK Preview:
Installation Through Debugging

Figure 1

Figure 2

Page 7

WDK Preview...
next step is to add a computer, which can be done by clicking

the Add button in the Configure Computers dialog.

Computers are configured for debugging by their network

name, thus you must be able to properly resolve your target

computer by name. In our case, we’ve cleverly named the

target machine win8-target. Therefore, that’s the name that we

will provide for the Computer Name field in the dialog. The

result of this can be seen in Figure 5.

In Figure 5, you can see that VS has defaulted to using the

network as the debug protocol. It’s also chosen a port number

for us and even generated an encryption key to be used to

(Continued on page 24)

Next, we need to choose which machine we want to kernel

debug. This is done via the Qualifier field of the Attach to

Process dialog. This should be blank at this point, so we’ll

click the Find button to locate a computer to configure (as

highlighted in Figure 3).

Doing so will bring up the Configure Computers dialog, as

shown in Figure 4. This dialog will be empty due to the fact

that you have yet to configure any computers. Therefore, the

(Continued from page 6)

Figure 5

Figure 4

Figure 3

Page 8

OSR’s Corporate, On-site Training
Save Money, Travel Hassles, Gain Customized Expert Instruction

We can:
Prepare and present a one-off, private, on-site seminar for your team to address a specific
area of deficiency or to prepare them for an upcoming project.
Design and deliver a series of offerings with a roadmap catered to a new group of recent hires
or within an existing group.
Work with your internal training organization/HR department to offer monthly or quarterly
seminars to your division or engineering departments company-wide.

To take advantage of our expertise in Windows internals, and in instructional design, contact an OSR seminar
consultant at +1.603.595.6500 or by email at seminars@osr.com.

C++ native exception handling or run-time type information.

But, for those who love it, this will be a big step forward. For

the rest of us, I feel a headache coming on.

Hardware Access in UMDF
The latest version of UMDF includes support for UMDF

access to ports and registers, as well as the ability to handle

(edge-triggered and MSI) interrupts. You can choose (via an

INF file option) to access your device registers directly from

your UMDF driver, or do that device access via a system

service. And, yes… this means that your little UMDF driver

can now have EvtDevicePrepareHardware and EvtDevice

ReleaseHardware event processing callbacks, just like its big

brother KMDF.

In fact, UMDF is receiving a great deal of emphasis in Win8.

Several small changes to UMDF have made it more generally

useful, easier to use when working with a kernel-mode driver,

and have in general expanded the reasonable usage scenarios.

Low Power Bus Support
As Windows 8 expands to support smaller, lower powered,

devices (think tablets and such), the need to provide system-

level support for the low-power buses used by these devices

becomes extremely important. Windows’ classic PnP/Power

scheme in which a parent bus provides power, interrupt and

data connections to the world (the way PCI does) isn’t

sufficient to describe the way that many devices are connected

in, for example, System On Chip (SoC) based systems. Win8

introduces system-wide support of low-powered buses

included I2C, SPI, GPIO, and even high speed embedded

UARTs.

(Continued on page 9)

W hile the big news might be that the Win8 WDK brings

Visual Studio integration to the driver world, there are

many more interesting things that were described at Build

about both Windows 8 and the Win8 WDK. In this article,

we’ll try to summarize a few of them that we found most

interesting. See http://dev.windows.com for a link to videos

of all the Build talks, as well as to the current WDK

documentation.

New Debugging Connections
Win8 brings two new, interesting, debugging options. The

first is network-based debugging. You can connect your host

(development) machine running WinDbg (or the Visual

Studio debugger) to your target (test) machine via the

network. According to what we’ve been told, this will work

across most network cards ―built within the last several

years.‖ We’ve tested it here at OSR. It does work, and it’s

fast, too.

The second new option for debugging connections is USB 3.

The only ―gotchas‖ here are that you’ll need a slightly unusual

cable to connect between two hosts and you’ll need a USB

implementation that supports debugging. The good news is

that all the ports on the USB 3 XHCI controller will support

debugging, so you won’t have to search for the single,

specific, mystical (or mythical) port that supports debugging

the way you do for USB 2 today.

Drivers in C++
If you’re a C++ fan, you be pleased to know that C++ will be

supported ―as a first class citizen‖ in the new WDK. This is

due to compiler and linker changes that enable things like

placement of class instances in appropriate (non-paged)

memory areas. Don’t lose your mind, though: You can’t use

But Wait...There’s More!
Win8 and WDK Changes You’ll Care About

http://www.osr.com/seminar_private.html
mailto:seminars@osr.com
http://dev.windows.com

Page 9

System DMA
You thought it was dead, didn’t you. Well, it’s baaaack!

Both WDM and KMDF have been expanded to add support

for new, SoC-style, system DMA. In system DMA, multiple

components share a single DMA controller, as opposed to bus

master DMA where the device itself contains sufficient logic

to master the bus and autonomously perform transfers

between itself and memory.

Improved Documentation
With this release of the WDK, even though it’s early days, the

WDK documentation has continued its steady evolution. To

my eyes, there’s been a lot of work done and the docs are

better than ever. The new layout is crisp, clean, and clear.

Most, if not all, functions now include the ―Requirements‖

section which quickly shows the earliest OS version in which

a given DDI is supported, the header in which the function is

declared, and even the IRQL at which the function can be

called. You’ll find many of the newer functions documented

already, which is a surprise and a treat. And, what may be the

biggest surprise of all, I actually found several of the example

code segments provided helpful. Gasp! What next!?!

And The Rest
There are numerous other changes in Win8 that might be of

interest to you, depending on the area in which you work. The

reader/writer spinlocks that were first introduced in Windows

7 are finally documented (see ExAcquireSpinLockExclusive

and friends). Directory oplocks have been introduced. A

couple of dozen new KMDF and more than 2 dozen or more

new UMDF functions have been provided. New support for

certain WiFi functions has been added to NDIS. Storport has

had considerable enhancements, including a whole new

meaning for the term SRB.

These are just a few of the changes you’ll find in Win8. We

can’t enumerate them all. Of course, you can count on us to

write more about these – and more – in future issues of The

NT Insider.

In Win8, the topology of these buses and the devices that are

connected to these buses are described using ACPI 5.0 ASL.

This description can also include connections to multiple

buses, such as in the case where a SPI device generates an

interrupt using a GPIO pin. The platform vendor provides the

driver for the (I2C, SPI, and/or GPIO) buses. Then, OEMs/

IHVs write client drivers that talk (in a controller and even

platform independent manner) to devices on those buses. A

new Windows component called the Resource Hub connects

client drivers to controller resources. You should expect to

see an expanded use of these low power buses in Windows, in

both SoC and even in non-SoC bases systems starting in

Windows 8.

Co-Installers and Support for Older WDF Versions
The new model for WDF will be to move away from co-

installers. YAY! This change makes lots of things (like, er,

the installation of certain filter drivers) much easier. The new

plan is apparently to push new versions of the Frameworks via

Windows Update. This means client machines may or may

not be updated, and if they are updated they can be updated on

the client’s timeframe, in the same way that updates of

the .Net Framework are handled today.

Another new feature that goes along with the above: Starting

with the Win8 WDK, it’s now possible to use the latest WDK

to build against an older version of the Framework. So, for

example, you could choose to build your driver against

KMDF 1.9 (which was released with Windows 7) instead of

against KMDF V1.11 (which is the version that will be

released with Windows 8).

Power and Power Framework (PoFx)
There have been several changes to power management that

focus on mobile devices, such as tablets and phones, where

power management is critical.

One of the biggest changes to power in Win8 is the support

for D3-Cold state. Prior to Win8, devices that were in D3

were always in D3-Hot. This meant that while the devices

were in a very low power state, these devices were never

100% powered off and that they remained enumerable on their

bus. In Win8, support for D3-Cold has been introduced to

enable maximal power savings.

Win8 also introduces support for a new concept called

―functional power states‖ or F-States, via the Power

Framework (PoFx). F-States, which are defined by a driver,

facilitate rapid transitions between higher and lower powered

states. PoFx also facilitates support of power management on

multi-function devices, where power to individual functions of

the device can be separately changed.

(Continued from page 8)

But Wait...There’s More...

Kernel Debugging & Crash Analysis

You’ve seen our articles where we delve into analyses
of various crash dumps or system hangs to determine
root cause. Want to learn the tools and techniques
yourself? Consider attendance at OSR’s Kernel
Debugging & Crash Analysis seminar. The next
offering of this seminar is to be held in:

Columbia, MD 14-18 November 2011

For more information, visit www.osr.com/debug.html

http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html

Page 10

C hange is hard. When I first heard that the new WDK

would be integrated with Visual Studio, I, just like a lot

of people, pitched a fit. In my mind, Visual Studio is too

bloated and complicated. I already have a lightweight editor

(SlickEdit), a lightweight debugger (WinDBG), and a build

system that makes sense to me. Why would I want to throw

this all away just to have some hideous IDE crammed down

my throat?

To prove a point (to no one but myself, really), I ran a test to

see how many of my development environments I could bring

up before VS even launched. Between the time I clicked the

VS icon and when I was presented with the Start Page, I was

able to launch:

12 Build Environment Windows

17 WinDBG Instances

An entire project consisting of four drivers

Clearly my current environment is more streamlined and VS

is a pig, right?

Well, turns out, yes and no. When I finally decided to put my

hubris away for a little bit and, gasp!, actually try to find some

good in the change, I discovered that there’s quite a bit to like

here. There’s definitely going to be some growing pains and

not absolutely everything is great, but here’s a list of five

things that I had to tip my hat to.

1. Configuring Symbols via the GUI

Remember how annoying it was to have to remember the full

path to the Microsoft Symbol Server? Probably not,

because .symfix has alleviated us of that need for quite a while

now. However, keeping your symbol search path correct

across multiple WinDBG workspaces is always a pain. Also,

trying to parse that long, wrapping, semicolon delimited

symbol search string when something isn’t working is never

fun.

Given that, it was with great joy that I found the Symbols

editor in the VS Debug->Options and Settings dialog, shown

in Figure 1.

The GUI makes it exceptionally clear where the debugger is

looking for symbols and you can even quickly edit the priority

of the locations by moving them with the up and down arrows.

As an added bonus, you can even exclude or include the

loading of symbols for specific modules. This is great for

avoiding the time spent going over the network for symbols

that will never be on the Microsoft Symbol Server, such as

(Continued on page 26)

Five Things to Like:
Visual Studio Integration

Figure 1

Page 11

T o complement the other article in this issue, Five Things

to Like About Visual Studio Integration, we decided it

would also be good to take a more critical view of the new

environment. In doing so, we’ve put together a list of five

things that we’re not so excited about with the new WDK.

While putting together this list, we’ve tried to avoid things

that are general to VS and not specific to the WDK

integration. So, please don’t take this article to mean that we

actually like the VS editor or that we couldn’t come up with a

zillion things that we didn’t like about it. I mean, is there

seriously no way to add a column marker without a crazy

registry hack that no longer appears to work?

1. What Works for Drivers and What Doesn’t?
While the WDK integration adds a few new driver-specific

menu items to VS, it currently doesn’t remove any menu items

that aren’t applicable to drivers. This quickly leads to

frustration as you’ll find yourself getting excited for some

new tool that’s going to improve your driver but, alas, isn’t

supported.

Code Metrics? Not for drivers. Code Coverage? Nope. Error

Lookup?? Doesn’t support NTSTATUS values. Right now it

doesn’t appear as though we’ll be getting any of VS’ modern

development features supported for drivers, though I’m really

hoping that changes. If not, why bother having all of this stuff

cluttering up my menus?

2. No Support for Building XP Drivers
It’s been argued to death on NTDEV, but it’s worth

mentioning again: no support for XP as a target build

platform. With XP not at End of Life until 2014, most of us

are going to be stuck supporting XP targets for years to come.

Without official support for XP, this could possibly mean

maintaining two entirely different build environments or

holding off on adopting the new build environment.

Here at OSR we’re planning on supporting two different build

environments for our kits and drivers. While changes to the

build files are typically rare in an existing project, this does

increase our test matrix as we’re not going to ship what we

don’t test.

3. It’s WinDBG in Visual Studio! Oh, wait…
After running a few of your favorite WinDBG commands, you

may be lulled into thinking that you are, in fact, still in

WinDBG. You have to remember though that this is VS with

a KD plugin, so things don’t exactly map one-to-one.

For example, VS currently doesn’t appear to support the

Debugger Markup Language (DML). Hopefully this will be

fixed in the future because I’ve gotten quite used to clicking !

analyze –v when the system crashes, and we have internal

tools here that rely heavily on DML. Another thing that I’m

missing already is the ability to right click text to send it to the

clipboard and then right click again to paste it to the command

line. I never quite realized how often I used this until I started

debugging an issue inside VS.

4. Visual Studio is SO a User Mode IDE
As driver writers, we live in a different world than application

developers. Take, for example, a case where you’re working

on some new code and want to step through it to make sure

you have your logic right (please don’t send us flame mail

about whether or not ―good‖ developers need to step through

code!). If you’re developing a user application, you add some

(Continued on page 28)

Five Things to Not Like:
Visual Studio Integration

Kernel Debugging & Crash Analysis

You’ve seen our articles where we delve into analyses of various crash dumps or system hangs to determine root
cause. Want to learn the tools and techniques yourself? Consider attendance at OSR’s Kernel Debugging &
Crash Analysis seminar. The next offering of this seminar is to be held in:

Columbia, MD 14-18 November 2011

For more information, visit www.osr.com/debug.html

http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html
http://www.osr.com/debug.html

Page 12

W ith the recent release of the Windows Developer Preview

(i.e., Win8), I took the opportunity to review the changes

that they’ve made public that will affect file system and file

system filter driver developers for the Windows 8 Platform.

While one can certainly look at the documentation, my

approach in preparing this article was to look at the changes in

the critical header files: ntifs.h and fltKernel.h, as these

suggest much of the current scope of changes.

With that said, my experience with previous pre-release

versions of Windows is that everything is subject to change.

Thus, it is unwise to count on any feature or change that we

describe in this article until the final release of Windows 8.

New File Systems
The header files suggest the presence of new file systems as

part of the Windows 8 release. This includes the Protogon file

system (although there is no new Protogon file system that I

could see in the Developer Preview). The headers indicate:

#define FILESYSTEM_STATISTICS_TYPE_PROTOGON 4
typedef struct _PROTOGON_STATISTICS {
 ULONG Unused;
} PROTOGON_STATISTICS, *PPROTOGON_STATISTICS;

Speculation in the press is that this will be the database-as-

filesystem model previously promoted as WinFS. If so, I

suspect it will be a substantially different implementation

(likely with a strong emphasis on performance). Then again,

if it wasn’t far enough along to include in the Developer

Preview, it might be one of those features that doesn’t make

the initial release.

In addition, there is quite a bit of new information about

something called CSVFS (perhaps the ―cluster shared volume

file system‖ to work with ―cluster shared volumes‖? If so,

this may just be exposing new information to an existing

technology). Again, it seems a bit premature to speculate,

especially given that if it is related to clustering, it is not likely

that this feature would be present in the client release.

Emphasis on Data Verification
Many of the changes we observed relate to data verification

support; whether this is an NTFS only feature, or if it will be

present in other file systems (e.g., Protogon). There are two

new FSCTLs (FSCTL_{GET,SET}_INTEGRITY_

INFORMATION) that appears to be related to these changes,

and a structure used to control this information (as shown in

Figure 1).

Frankly, this makes quite a bit of sense: modern disk drive

technologies are vastly more complicated than they have been

in the past and can (and do) suffer from real issues with

respect to data integrity. Thus, it is quite possible to read data

back from the drive and receive something other than what

was originally written. While it doesn’t happen frequently, it

does happen and most applications are not written to

withstand that sort of data corruption. Some applications,

particularly database applications, are highly susceptible to

this type of data corruption – the relationship information

between the components can be lost when critical database

information is lost. While transactional database models will

protect against some forms of failure, they do not protect

against incorrect data being returned from the underlying

storage media.

Data Deduplication
Another intriguing hint

from the header files are

suggestions for supporting

d a t a d e d u p l i c a t i o n

techniques. For example

the following new FSCTL

operations for data

deduplication are present

(see Figure 2).

(Continued on page 13)

Windows 8 Preview:
File System Changes

#define FSCTL_INTEGRITY_FLAG_CHECKSUM_ENFORCEMENT_OFF (1)

typedef struct _FSCTL_INTEGRITY_INFORMATION_BUFFER {
 USHORT ChecksumAlgorithm; // Checksum algorithm. e.g. CHECKSUM_TYPE_UNCHANGED,
CHECKSUM_TYPE_NONE, CHECKSUM_TYPE_CRC32
 USHORT Reserved; // Must be 0
 ULONG Flags; // FSCTL_INTEGRITY_FLAG_xxx
} FSCTL_INTEGRITY_INFORMATION_BUFFER, *PFSCTL_INTEGRITY_INFORMATION_BUFFER;

And equally interesting, there is the presentation of “integrity streams”:

#define FILE_SUPPORTS_INTEGRITY_STREAMS 0x04000000 // winnt

Figure 1

// Dedup FSCTLs
// Values 162 - 170 are reserved for Dedup.
//
#if (_WIN32_WINNT >= 0x0602)
#define FSCTL_DEDUP_FILE CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 165, METHOD_BUFFERED,
FILE_ANY_ACCESS)
#define FSCTL_DEDUP_QUERY_FILE_HASHES CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 166, METHOD_NEITHER,
FILE_READ_DATA)
#endif /*_WIN32_WINNT >= 0x0602 */ Figure 2

Page 13

Thus, this suggests using a scheme by which file hashes are

being queried and data deduplication is being done for those

blocks with identical hash values (for good deduplication hash

algorithms, the likelihood of a data hash collision is very low).

Offload Support
The header files strongly hint at new support for ―offloading‖

I/O operations. While we are speculating a bit, if this is

similar to other forms of offloading, it would suggest the use

of hardware to perform some operations (e.g., I/O operations

as well as computing hashing). This might be used, for

example, for intelligent disk drives to allow them to perform

additional high level processing, such as is done in Object

Storage Devices. When combined into file systems, such

devices can actually provide specialized support and can even

split data and meta-data across multiple drives (local and

remote). Whether or not that is what is envisioned here is still

uncertain (after all, this is just based upon header file

information).

There are two new FSCTL operations for offload (Figure 3).

What is particularly important about this new support is that it

is disabled if file system filter drivers do not support it,

according to the comments within the header file itself

(Figure 4).

(Continued from page 12)

Thus, it is important for those building file system filter

drivers to be both aware of this new functionality and to

ensure that they support it. Otherwise, it runs the potential

risk of breaking some other product’s functionality (or at least

degrading performance) without supporting it.

Advanced FCB Header Changes
File system filter driver writers won’t notice this change as

much as those of us building file systems, but the Windows 8

version of the advanced FCB header has changed. The

Advanced FCB header has gained a new field (Oplock) and

the definition of FsRtlSetupAdvancedHeader (implemented

in the header file) has changed to initialize the header

properly.

The comment from the header file is fairly clear on this one

(see Figure 5).

Note that this declares there to be a new FCB header version

(2), set in the Version field of the common FCB header.

Oplocks
This new oplock field appears to tie into a new round of

oplock support changes in Windows 8. For example, we have

several new support functions: FsRtlCheckLockForOplock

Request and FsRtlAreThereWaitingFileLocks .

Interestingly, these new support routines have been optimized

so that byte range locks on regions of the file outside the

allocated range will not conflict with oplocks (recall that byte

range locks and oplocks are traditionally inconsistent).

(Continued on page 14)

File System Changes...

#define FSCTL_OFFLOAD_READ CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 153, METHOD_BUFFERED, FILE_READ_ACCESS)
#define FSCTL_OFFLOAD_WRITE CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 154, METHOD_BUFFERED, FILE_WRITE_ACCESS)

Figure 3

//
// To better guarentee backwards compatibility for
// selective new file system functionality, this new
// functionality will be disabled until all mini
// file system filters as well as legacy file system
// filters explicitly opt-in to this new functional-
// ity. This is controlled by a new registry key in
// the filters service defintion called
// "SupportedFeatures".
//
// File System filters need to update their .INF
// files to set state that the given functionality is
// now supported. Even if a filter can't actually
// support the given operations they should mark in
// the .INF that it is supported and modify their
// filter to fail the operations they don't support.
//

Figure 4

//
// The following fields are valid only if the Version
// field in the FSRTL_COMMON_FCB_HEADER is greater
// than or equal to FSRTL_FCB_HEADER_V2. These
// fields are present in Windows 8 and beyond.
//
// For local file system this is the oplock field
// used by the oplock package to maintain current
// information about opportunistic locks on this
// file/directory.
//
// For remote file systems this field is reserved.

 union {

 OPLOCK Oplock;
 PVOID ReservedForRemote;

 };
#endif
#define FSRTL_FCB_HEADER_V2 (0x02)

Figure 5

http://en.wikipedia.org/wiki/Object_storage_device
http://en.wikipedia.org/wiki/Object_storage_device

Page 14

contents of the reparse information) it is encouraging to find

that there will be a solution to this problem for future releases

of Windows.

Basically, this ECP information will allow a filter to obtain

detailed information about the reparse point:

typedef struct _IO_DEVICE_HINT_ECP_CONTEXT {
 PDEVICE_OBJECT TargetDevice;
 UNICODE_STRING RemainingName;
} IO_DEVICE_HINT_ECP_CONTEXT,
*PIO_DEVICE_HINT_ECP_CONTEXT;

Indeed, the comment from the header file fairly clearly

describes the model for this new ECP:

// This GUID and structure are for passing back
// information from the I/O manager to the filter
// manager about a reparse when the reparse target
// goes to a new device.

Cache Manager
There are a number of Cache Manager changes present in the

Windows 8 header file as well. One that has me a bit

mystified is the exposure of a new structure:

typedef struct _READ_AHEAD_PARAMETERS {

 CSHORT NodeByteSize;

 //
 // Granularity of read aheads, which must be an
 // even power of 2 and >= PAGE_SIZE
 // See Also: CcSetReadAheadGranularity.

 ULONG Granularity;

 //
 // The request size in number of bytes, to be
 // used when performing pipelined read-aheads.
 // Each read ahead request that is pipelined is
 // broken into smaller PipelinedRequestSize
 // sized requests. This is typically used to
 // increase the throughput by parallelizing
 // multiple requets instead of one single big
 // one.
 //
 // Special behavior:
 // If this value is zero, then Cc will break

(Continued on page 15)

Logically, this makes sense. The rationale for not allowing

both is that applications using byte range locks want to obtain

coherent copies of the data, which is incompatible with the

basic premise of caching. However, byte range locks on

regions of the file where there is no data are used by

applications as a means of inter-process communications

(potentially on different computers) and not related to data

coherency. Thus, these routines should actually permit the

use of oplocks in a broader range of situations.

New ECP Types
Another interesting change related to oplocks is the new

support for extra create parameters (ECPs) for tracking oplock

―ownership‖ state for not only the target of an open operation,

but also the parent. Note the definition of the new dual oplock

key:

DEFINE_GUID(GUID_ECP_DUAL_OPLOCK_KEY, 0x41621a14,
0xb08b, 0x4df1, 0xb6, 0x76, 0xa0, 0x5f, 0xfd, 0xf0,
0x1b, 0xea);

Presumably, this would be useful for rename operations (for

example) and would allow operations to proceed without

forcing oplock breaks (much like the GUID_ECP_OPLOCK_

KEY was used previously to keep from breaking oplocks with

associated opens to the original oplock holder).

Beyond this, we also have a solution to the frustration of

receiving back an error whenever a reparse occurs inside a call

to IoCreateFileSpecifyDeviceObjectHint (or any function

that it calls it, including the various Filter Manager APIs for

opening files). This error (STATUS_MOUNT_POINT_NOT

_RESOLVED) is difficult to resolve cleanly in a file system

filter driver. Having done so (by iterating through the path

until finding the reparse point, then opening it to query the

(Continued from page 13)

File System Changes...

Custom Software Development—Experience, Expertise
...and a Guarantee

In times like these, you can’t afford to hire a fly-by-night Windows driver developer. The money you think you’ll
save in hiring inexpensive help by-the-hour, will disappear once you realize this trial and error method of
development has turned your time and materials project into a lengthy “mopping up” exercise...long after your
contract programmer is gone.

Consider the advantages of working with OSR. If we can be of value-add to your project, we’ll tell you. If we
can’t, we’ll tell you that too. You deserve (and should demand) definitive expertise. You shouldn't pay for
inexperienced devs to attempt to develop your solution. What you need is fixed-price solutions with guaranteed
results. Contact the OSR Sales team at sales@osr.com to discuss your next project.

http://www.osr.com/consulting.html
http://www.osr.com/consulting.html
mailto:sales@osr.com

Page 15

OSR: Just Ask

Ask us to cogently explain the Windows I/O Manager
to a couple dozen Windows developers of varied
background and experience. Ask us how to address
latency issues in a given design of a driver. Ask us to
look at a post-mortem system crash, determine its
root cause, and suggest a fix. Ask us to design and
implement a solution that plays well with Windows,
even if it has no business being a Windows solution in
the first place.

Ask us to perform any of the above activities for your
company, and you will be pleased with the definitive
answer or result we provide.

So, the only question WE have is, “How can we help
you?”

Contact: sales@osr.com

The Filter Manager APIs have been extended to support new

features, such as the reparse point support (see

GUID_ECP_FLT_CREATEFILE_TARGET).

The MDL interfaces are now also available as part of

FltReadFileEx and FltWriteFileEx. While not fundamental

changes to the model, they should simplify development for

those mini-filters that wish to use the capabilities of existing

OS interfaces that have not previously been available via the

Filter Manager interface directly.

There are also new Filter Manager APIs for invoking the fast

I/O MDL operations directly, as well as Filter Manager

wrappers around the get/set interface for quota information.

Finally, there is now support for retrieving multiple contexts

simultaneously using the new FltGetContextsEx. There is a

corresponding ―bulk release‖ operation in FltRelease

ContextsEx.

Conclusions
There are other changes (notably in the security area) that we

haven’t been able to cover, but it is clear that while there are a

number of interesting new changes for file systems and filter

drivers in Windows 8, they are more along the lines of

evolutionary, rather than revolutionary.

Stay tuned as we watch Windows 8 evolve – after all, as we

said before, none of this is known until the final version ships.

 // every read-ahead request into two. This is
 // used for backward compatibility where we
 // used to break every read-ahead request for
 // remote FS into two.
 //
 ULONG PipelinedRequestSize;

 //
 // Growth of read ahead in percentage of the
 // data that has already been read by the
 // application so far
 //
 ULONG ReadAheadGrowthPercentage;

} READ_AHEAD_PARAMETERS, *PREAD_AHEAD_PARAMETERS;

There is some interesting information in here, but the existing

interface does not seem to provide any mechanism for us to

obtain or directly modify these values. Perhaps we will see

something in a future release, or some clarification as to the

ultimate use of this structure.

There are a number of additional new functions exported from

the Cache Manager as well: CcCopyReadEx,

CcScheduleReadAheadEx, and CcSetAdditionalCache

AttributesEx. These new functions introduce the concept of

an ―I/O issuer‖ – these new functions take an extra parameter,

a PEPROCESS pointer.

Filter Manager Changes
There are a number of Filter Manager changes visible in the

new header files as well. Perhaps the most interesting is that

there is now a section context – so that file system filter

drivers can associate specific state with a section (in addition

to the other context types already supported by the Filter

Manager). From the material available (including preliminary

documentation) it appears that the purpose of this is to allow

mini-filters to synchronize changes to section objects. A

number of new APIs have been introduced to support this,

including FltGetSectionContext, FltSetSectionContext,

FltRegisterForDataScan, FltCreateSectionForDataScan,

and FltCloseSectionForDataScan.

The registration structures have changed to accommodate the

new section contexts. Note that section contexts are only

present in Windows 8 and more recent.

Beginning with Windows 8, Filter Manager now supports

filters for the named pipe file system (NPFS) as well as the

mail slot file system (MSFS). To filter these, mini-filters must

indicate their interest as part of their registration information.

To further aid in supporting these, the Filter Manager now

provides new functions for opening named pipes

(FltCreateNamedPipeFile) and mail slots (FltCreate

MailslotFile). Presumably these are wrappers around the

existing OS calls.

(Continued from page 14)

File System Changes...

mailto:sales@osr.com

Page 16

I n case you haven’t heard, Microsoft has converted the

WDK to integrate with Visual Studio 11. What this means

for us developers is that the driver projects that we previously

built with Win7 WDK build environment will have to be

converted to use the new build environment.

When we say that a project needs to be converted, what

exactly do we mean? Well, remember that in the previous

WDK a driver project had a sources file (SOURCES.) and

optionally a makefile.inc. In order to build a driver project in

the new build environment you need a Visual Studio project

file (.vcxproj). So how do you get of those?

The new version of the WDK introduces a tool called

―NMake2MsBuild.‖ What this tool does is the topic of this

article. So without further ado let’s talk about

NMake2MsBuild.

NMake2MsBuild
As we mentioned, NMake2MsBuild is a Microsoft-provided

utility that is used to convert an existing WDK ―Sources.―

based project into a ―.vcxproj‖ based project that can be built

by Visual Studio or from the command line directly using

MsBuild. While we are sure everyone knows about building

projects with Visual Studio, there may be a few people who

don’t know about MsBuild.

MsBuild is a utility that is included with Visual Studio that

allows a developer to build Visual Studio based projects

(.vcxproj files) from the command line, like the ―Build‖ utility

did in the Win7 WDK. So whether you want to build your

driver project from within Visual Studio or from the

Command Line with MsBuild, NMake2MsBuild is the tool

you use to convert your Win7 WDK project.

Now that we’ve distinguished between MsBuild and Visual

Studio, let’s continue with discussing NMake2MsBuild.

NMake2MsBuild Command Line
NMake2MsBuild is shipped with the new WDK and is

typically found in your %SYSTEMROOT%\Program

Files\Windows Kits\8.0\bin\[x86,amd64] directory. Run this

command from the directory that contains the ―Sources.‖ or

―Dirs‖ file that you want to convert. The syntax of the

command is shown in Figure 1, with descriptions as follows:

Sources or Dirs indicates what is to be converted

(i.e. a project that has a ―Sources.‖ file or a project

that contains a ―DIRS.‖ file.

Verbosity is one of the ―System.Diagnostics.

SourceLevels‖ which are:

Off – does not allow any events through

Critical – Allows only Critical events

through

Error – Allows Critical and Error events

through

Warning – Allows Critical, Error, and

Warning events through

Information – Allows Critical, Error,

Warning, and Information events through

Verbose – Allows Critical, Error, Warning,

Informational, and Warning events through

ActivityTracing – Allows Stop, Start,

Suspend, Transfer, and Resume events

through

All – Allows all events through

SafeMode – does not provide IDE/UI support for

Nmake targets but may provide a more accurate

conversion for Nmake targets. (Only specify ―–

SafeMode‖ if you experience issues during build

steps that were previously performed in your

project’s Nmake targets)

Arm – adds ARM as a valid target CPU architecture

to the project’s build configurations. The generated

project will still require that the installed build

environment and WDK support targeting ARM.

The default logging level for ―–Log‖ is ―Verbose‖ while the

default logging level for ―–ConsoleLog‖ is ―Information‖.

As you can see the NMake2MsBuild command has very few

options, but don’t let that fool you. This is a very complex

utility that was written to convert very complex driver projects

into ―.vcxproj‖ based projects.

You might be wondering if you have to use the command line

to do the conversion to a ―.vcxproj‖ based project. The

answer is NO! In Visual Studio 11 you can skip doing this

conversion from the command line and do the conversion
(Continued on page 17)

Windows 8 WDK
Converting “Sources.” Based Projects to “.vcxproj”

NMake2MsBuild <sources|dirs.> [-Log:[<LogFile>]:[<Verbosity>] [-ConsoleLog:<Verbosity>] –SafeMode -Arm

Figure 1—Syntax for NMake2MsBuild

Page 17

inside Visual Studio via the ―Convert Sources/Dirs‖ option

found via the File Open menu item as shown in Figure 2.

Since that is the way most developers are going to do their

conversions, we will perform all the conversions of projects

described in this article via Visual Studio.

Converting projects with NMake2MSBuild
When you convert a project, NMake2MsBuild will attempt to

create a ―.vcxproj‖ project file that you can use to build your

driver in the new build environment. When we say

―attempt‖ we mean the conversion utility will do its best to

perform the conversion. Most of the time, and certainly for

any simple projects we’ve tried, the conversion is performed

without a hitch. Unfortunately there will also be times when

(Continued from page 16)

NMake2MSBuild will not be able to perform the conversion.

For example, here at OSR we have projects that been around

since NT 4 and we have been hacking, whacking, and

patching our sources files to keep the projects building with

each subsequent release of newer WDKs. As a result of this

―evolution‖, these old sources files have a lot of crufty and

unused things that NMake2MsBuild doesn’t like. That

shouldn’t be very surprising. In fact, it’s more surprising that

some of these old files worked with Build at all. So

unfortunately for us, we’re probably going to have to create

new projects from scratch. Oh well, it was probably time to

clean up all the old junk anyway.

Let’s take a look at a couple of example project conversions.

For our first example, the project containing the sources file is

shown in Figure 3 below. You will notice that this is for a

KMDF driver and there are no pre-build or post-build steps

(.i.e. there is no ―makefile.inc‖ file with this project).

(Continued on page 18)

Converting to “.vcxproj”...

TARGETNAME=Nothing
TARGETTYPE=DRIVER
TARGETPATH=obj

KMDF_VERSION_MAJOR=1
KMDF_VERSION_MINOR=9

SOURCES=nothing.cpp

Figure 3—Nothing Sources. File

Figure 2—Converting Inside of Visual Studio

Page 18

Windows Internals & Software Driver Development

Attention security researchers, government contractors and engineers involved in security and threat analysis
modeling! The next offering of our Windows Internals & Software Drivers seminar has been scheduled.

17-21 October, Waltham, MA

For a look at the outline, pricing and registration information, visit www.osr.com/swdrivers.html.

From within Visual Studio, we use the ―Convert Sources/

Dirs‖ option and get the results shown in Figure 4 below.

Notice that we have a small log written to the Output pane

describing how the conversion went (truncated to save space),

a more detailed log (NMake2MsBuild_Sources.Log) was

written out during this conversion and is stored in the

directory being converted. In addition you will see that the

files of our example ―Nothing‖ project are now visible in the

Solutions Explorer window.

As you can see, the conversion operation here was pretty

simple. We had a simple sources file that was easily

(Continued from page 17)

converted into a ―.vcxproj‖ project. Now, let’s look at a little

more complicated project.

For our next conversion we will convert a UMDF driver from

the Win7 WDK to a ―.vcxproj‖ based project. The sources

file for this project is shown in Figure 5 (next page). In

looking at this sources file you should notice a couple of

things:

The project uses WPP tracing

The project has a custom build step

(NTTARGETFILE1) which requires a makefile.inc

file shown in Figure 6 (next page).

(Continued on page 19)

Converting to “.vcxproj”...

Figure 4—Converting Nothing Project

http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html

Page 19

(Continued from page 18)

(Continued on page 20)

Converting to “.vcxproj”...

.SUFFIXES: .inx

STAMP=stampinf

$(OBJ_PATH)\$(O)\$(INF_NAME).inf: $(_INX)\$(INF_NAME).inx
.inx{$(OBJ_PATH)\$(O)}.inf:
 copy $(@B).inx $@
 $(STAMP) -f $@ -a $(_BUILDARCH) -k $(KMDF_VERSION_MAJOR).$(KMDF_VERSION_MINOR) -u
$(UMDF_VERSION_MAJOR).$(UMDF_VERSION_MINOR).0

Figure 6—Makefile.inc for UMDF Project

UMDF_VERSION_MAJOR controls the headers that the driver uses.
UMDF_VERSION_MAJOR + UMDF_VERSION_MINOR control which version
of UMDF the driver is bound to in the INF and which
update coinstaller it requires (through stampinf).

UMDF_VERSION_MAJOR=1
UMDF_VERSION_MINOR=9

KMDF_VERSION_MAJOR=1
KMDF_VERSION_MINOR=9

TARGETNAME=WUDFOsrNothing
TARGETTYPE=DYNLINK

USE_MSVCRT=1

WIN32_WINNT_VERSION=$(LATEST_WIN32_WINNT_VERSION)
_NT_TARGET_VERSION=$(_NT_TARGET_VERSION_WINXP)
NTDDI_VERSION=$(LATEST_NTDDI_VERSION)

Set the warning level high

MSC_WARNING_LEVEL=/W4 /WX

#pragma warning(disable: 4201) // nonstandard extension used : nameless struct/union
MSC_WARNING_LEVEL=$(MSC_WARNING_LEVEL) /wd4201

If you want to use WPP tracing then uncomment the following line.

#C_DEFINES = $(C_DEFINES) /D_UNICODE /DUNICODE /DUSE_WPP=1
C_DEFINES = $(C_DEFINES) /D_UNICODE /DUNICODE

DLLENTRY=_DllMainCRTStartup
DLLDEF=exports.def

INCLUDES=$(INCLUDES);..\inc

SOURCES=\
 OsrNothing.rc \
 dllsup.cpp \
 comsup.cpp \
 driver.cpp \
 device.cpp \
 queue.cpp \
 ioQueue.cpp

TARGETLIBS=\
 $(SDK_LIB_PATH)\strsafe.lib \
 $(SDK_LIB_PATH)\kernel32.lib \
 $(SDK_LIB_PATH)\advapi32.lib

NTTARGETFILE1=$(OBJ_PATH)\$(O)\WUDFOsrNothing.inf

This sets up the WPP preprocessor and tells it to scan internal.h to find
the trace function definition that's in there.

RUN_WPP= $(SOURCES) -dll -scan:nothing.h

TARGET_DESTINATION=wudf

Figure 5—UMDF Driver Sources File

Page 20

NEW SEMINAR—Windows Internals for Forensic Analysts

30 January—2 February, Columbia, MD

Based on feedback from students and managers, OSR is in the process of organizing a new seminar covering
topics of interest to those in the field of forensic analysis for information security and cyber warfare. This new
Windows internals presentation includes hands-on lab time where attendees can “get their hands dirty”
implementing solutions that explore functionality and solicit data from a Windows system.

For a look at the outline, pricing and registration information, visit www.osr.com/forensics.html.

For this conversion, Nmake2MsBuild has to take both the

WPP tracing and the custom build steps into account when

performing the conversion. We’ll skip showing the conversion

output since it worked without a problem, but what we will

show you is the output of a build of our converted project.

(Continued from page 19)

See Figure 7 for output of the converted project in Visual

Studio.

See Figure 8 (next page) for the output of the converted

project in MsBuild.

Notice that the NTTARGETFILE1 step that was created to do

a StampInf call was successfully imported into the ―.vcxproj‖

project and performed when we built the project.

(Continued on page 21)

Converting to “.vcxproj”...

Figure 7—Building a Converted Project Using Visual Studio

http://www.osr.com/forensics.html
http://www.osr.com/forensics.html

Page 21

Once the conversion is complete, you can build the new

project from within Visual Studio just like you build an

application. Or, if you prefer, you can build your project

outside of Visual Studio by invoking MsBuild directly via the

command line. Either way,

notice (and this is a big deal if

you ask me) the new WDK

automatically adds project steps

to sign your driver (you can

configure it to either use a test

signing certificate or your release

signing cert), and optionally even

automatically copies your driver

to a test system and install it.

You really can’t ask for much

more than that. The key to

getting these features is using the

Win8 WDK. And the key to

using the Win8 WDK is

converting your project from

sources/dirs. to ―.vcxproj‖

format.

Summary
I n t h i s a r t i c l e o n

NMake2MsBuild, we have

shown that , in general ,

converting simple driver projects

from traditional dirs/sources

format to the new ―.vcxproj‖

format used in the Win8 WDK is

pretty simple. Whether you

choose to do your conversion

from the command line with

Nmake2Msbuild or from within

Visual Studio, this Microsoft

utility strives to do the right

thing. And as we mentioned,

there are going to be projects that

may not be able to be converted,

but hey, if it were easy, this

conversion to Visual Studio

would have been done a long

time ago.

(Continued from page 20) Converting to “.vcxproj”...

Figure 8—Building a Converted Project Using MsBuild

Subscribe to The NT Insider Digital Edition

If you are new to The NT Insider (as in, the link to this issue was forwarded to you), you can subscribe at:
 http://www.osronline.com/custom.cfm?name=login_joinok.cfm

http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

Page 22

Epic Update...

complete with all the necessary cross-certificates so you don’t

have to go searching for them.

The Windows Driver Kit, which used to be called the

Windows Driver Development Kit (DDK), has gone through

only two significant changes in its almost 20 year history.

The first versions of the DDK required developers to

separately acquire and install the compiler and Platform SDK,

and then install the driver kit. The DDK itself was assembled

by hand. The few example drivers supplied rarely built

without error, and when they did they rarely ran correctly.

Installing the kit was a major PITA, a real trial in fact, as it

required you to provide just exactly the correct versions of the

VC++ and the PSDK and install them in precisely the correct

order. This was true even when the ―correct‖ versions of

VC++ and the PSDK were no longer available from MSDN.

So, woe unto the poor developer who didn’t save the proper

(Continued from page 1)

CDs! In short, these early versions of the DDK seriously

sucked, but we lived with them for many years. As driver

developers, many of us felt like Microsoft didn’t much care

about us or the tools they gave us to do our jobs.

The first major change to the DDK came with the introduction

of Windows XP in 2001. Starting with this version of the

DDK, the compiler, linker, headers, and libs were distributed

as integral parts of the DDK. Many more sample drivers were

provided, and these drivers all built without errors (though,

not necessarily without warnings). While the samples were of

varying quality, they mostly worked. It is hard to overstate

how much having all the tools bundled into the DDK

improved our lives as developers. Installing the DDK became

simple; no longer an excruciatingly painful exercise in self-

flagellation. It was an awesome step forward. Coincidentally

or not, it was in this timeframe that many driver developers

started to feel like Microsoft was listening to us, and trying to

help meet our needs.

For the past several years, members of the driver development

community have been asking for a more modern driver

(Continued on page 23)

Figure 1 -- Driver Writing in Visual Studio with the Win8 WDK

Page 23

Epic Update...

development environment. They didn’t want to build from the

command line anymore. Because many devs work on both

user-mode and kernel-mode code, they wanted to be able to

use one tool, Visual Studio, for both their user-mode and

kernel-mode development tasks.

And thus, ten years after the introduction of Windows XP, the

second major change to the Windows Driver Kit has now

come to light. Gone are our old friends the various build

environment command prompt windows, build, sources, and

dirs. In their place, we get Visual Studio with IntelliSense,

class browsing, and all the features I mentioned earlier. You

can see what the interface looks like in Figure 1.

While this is an epic, most excellent, and much appreciated

change, all is not sweetness and light with the Win8 WDK.

We’re not merely getting a new alternative for building

drivers for Windows. The old tools are totally and completely

gone. This means you will not find build.exe, makefile.new

or setenv.cmd anywhere in the Win8 WDK kit. So, if you

want to use the new WDK, you will migrate to the new

environment whether you want to or not. Fortunately, the

WDK provides a utility that’ll convert most (many? some?)

projects from the old sources/dirs format to the new vcxproj

format. We describe the conversion process in this issue (See

Converting “Sources.” Based Projects to “.vcxproj”) .

However, the point here is that Visual Studio integration isn’t

optional. It’s the way things are, and the way things will be

going forward.

There’s another detail that’s likely to cause many dev teams at

least a little heartburn. This is the fact that, as shown in

Figure 2, the new Win8 WDK does not support building

drivers for Windows XP. Because most of us don’t have the

option of not supporting XP, this means we’ll need to

maintain parallel build environments with parallel project

descriptions. Fortunately, once a project is developed, you

typically don’t have to play with the project’s build

(Continued from page 22)

description very much. But still, having to maintain two

entirely separate project build environments, with two entirely

different sets of project metadata, is just asking for trouble.

Perhaps, if we ask nicely enough, we’ll be able to prevail

upon the WDK team to support building drivers for Windows

XP in the Win8 WDK.

And, of course, there are rough edges. Some of these are

undoubtedly due to the early nature of this release. But some

of them look like they’ll be with us into the eventual final

release of the kit. I guess we can’t have everything we might

wish for given to us all at once.

But, for a while at least, let’s not dwell on the negative. Let’s

celebrate this epic change that so many of us have been

requesting. Let’s praise the fact that they chose to do it right

and not just toss in some command procedure that invokes the

old build environment through a new front-end. And let’s

recognize and admire the effort (and, to put it quite frankly,

the balls) it’s taken to get the WDK from where it’s been for

the last ten years to where it is today.

I, for one, am stoked about the changes. I hope you are too.

Figure 2 -- Hmmm... No Windows XP?

Learn to Write KMDF Drivers
Why wouldn’t you? If you’ve got a new device you need to support on Windows, you should be considering the
advantages of writing a KMDF driver. Hands on experience with labs that utilize OSR’s USB FX2 device makes
learning easy—and you get to walk away with the hardware! Please join us at our very popular Writing WDF
Drivers for Windows seminar. Visit the OSR website, where you can learn of the next available offering or join the
Seminar Update mailing list to be advised when new seminar presentations are scheduled.

Or, for questions, contact an OSR seminar coordinator at seminars@osr.com.

http://www.osr.com/wdf.html
http:/www.osr.com/wdf.html
mailto:seminars@osr.com

Page 24

WDK Preview...
encrypt the KD data transferred. For our purposes we can just

leave the defaults the way that they are, but now is when you

could change the debug transport to be 1394, USB, serial, etc.

or change any specific debug settings.

At this point, we’re all set to click Configure and be presented

with the dialog in Figure 6.

Expect this process to take several minutes, including a few

reboots of the target machine. If you receive any access denied

errors during this process, make sure that you have UAC

disabled on the target and enabled on the host. Also be sure

that you’ve run VS elevated on the host machine.

If everything works, you will eventually be told that the

configuration succeeded and again be presented with the

Attach to Process dialog. However, this time you’ll be given

the option to attach to the target machine, as can be seen in

Figure 7.

(Continued from page 7)

(Continued on page 25)

Windows Internals & Software Driver Development

Attention security researchers, government contractors and engineers involved in security and threat analysis
modeling! The next offering of our Windows Internals & Software Drivers seminar has been scheduled.

17-21 October, Waltham, MA

For a look at the outline, pricing and registration information, visit www.osr.com/swdrivers.html.

Figure 6 (above) and Figure 7 (below)

http://www.osr.com/swdrivers.html
http://www.osr.com/swdrivers.html

Page 25

WDK Preview...

It’s worth mentioning that we had several cases where the

configuration process appeared to hang during the kernel

debug options stage. Checking the target machine, however,

showed that kernel debugging was properly configured. We

(Continued from page 24)

reported this to the WDK team and it’s being investigated. For

now, it is safe to assume that if you make it to the,

―Configuring kernel debugger‖ stage you can cancel out of the

configuration but still successfully attach to the target.

The last thing to do is break into your target machine by

clicking the Debug->Break All menu item (Figure 8). Then

you’re all set to start enjoying your new development

environment (Figure 9)!

Figure 8 (above) and Figure 9 (below)

Page 26

Five Things to Like... delay followed either by an error or no visual clue of whether

or not your breakpoint was set. You’re then forced to just, ―try

it‖ and see if the breakpoint was actually set or not.

Using VS, you’re no longer responsible for stopping the target

to set the breakpoint; All you have to do is open your source

and hit F9. If the target is running, VS will stop the target, set

the breakpoint, and then resume it seamlessly. In addition, it

also doesn’t matter if your driver is loaded or not. Just hit F9

and VS will set an unresolved breakpoint and, more

importantly, will display the breakpoint in the GUI as it would

any other breakpoint (see Figure 2).

3. Suppress PREfast Warnings via the GUI

I’m all for anything that helps us write better code. For the

annoyance it caused in the beginning, it’s hard to say that

PREfast doesn’t do just that. However, for all the times that it

does right by me, the times that

PREfast is wrong or spurious make

me insane. All I want is for the

warning to go away, but can never

quite seem to remember the magic

#pragma incantation to suppress the

warning. This generally results in

me searching my projects directory

for, ―#pragma‖ and looking for the

last time I had to suppress

something.

You can imagine then how excited I

was when I discovered that not only

can PREfast be run via the GUI, but

the warnings can also be suppressed

with a few clicks (see Figure 3).

Suppressing the message adds the

appropriate #pragma to make the

warning go away, as can be seen in

Figure 4.

You’ll note, however, two down

sides to the automatic suppression.

First, I’d like to see the suppression

using a pre-defined constant with a

meaningful name for the warning

number. During a code review, I’d

have absolutely no idea what

warning 28208 was, which would

make me wonder if it should really

be suppressed or fixed. In addition,

I’d like to see the suppression put

some stub text either above or as

part of the #pragma that leaves room

to explain the warning. Again, when

someone comes back to this in the

future it would be nice if it was very

clear about why this was suppressed

instead of fixed.

Continued on page 27)

third party driver symbols. This option has been available in

WinDBG for a long while, but required magical incantations

found only in a random MS Word document shipped with the

debugger.

2. Better Experience Setting Breakpoints via the GUI

Using the WinDBG GUI to set breakpoints has always been a

bit of a hassle. First off, you need to remember to break into

the target before setting the breakpoint. Next, your driver had

better already be loaded or you’ll be punished with a long

(Continued from page 10)

Figure 4

Figure 3

Figure 2

Page 27

configuring a target machine for debugging. Luckily for all of

us, those days are now over given the new support in VS for

automatically configuring target machines. We’re covering

how to configure a target machine for debugging via the UI in

another article in this issue (see WDK Preview: Installation

Through Debugging), so I won’t go through that again here.

However, when it works, debugging is just a click away and

that’s pretty awesome.

One gripe I have about this is that when you configure the

target machine for kernel debugging it doesn’t add a separate

BCD entry for debug. Thus, you’ll be forced to always boot

with the debugger enabled unless you change the settings

during the boot process by hitting F10.

What’s Do You Think?

What are your impressions after playing with the preview?

Agree with the things we like here? Disagree? Have your

own? Let us know! And be sure to check out our other article

in this issue, Five Things to NOT Like About Visual Studio

Integration.

Five Things to Like...

4. Intellisense for Debugger Commands

This one doesn’t need much explaining and it’s just awesome

once you’ve had a chance to use it. Start typing out a

WinDBG command and you’ll be greeted with a list of

matching commands and even some documentation, as can be

seen in Figure 5.

Sometimes you even get information about the parameters to

the command, as can be seen with .show_sym_failures in

Figure 6.

My only complaint at this point with this feature is that

parameter information isn’t shown for all commands.

Hopefully as the support matures we’ll get that in the future.

5. Automatically Configuring Target Machines for

Debugging

I don’t think that I need to convince anyone that BCDEdit is

cumbersome and cryptic. If I’m not using the default debug

configuration of COM1 at 115200, I’m lost when it comes to

(Continued from page 26)

What OSR Students Say

"I learned so much more in the week spent here than trying to learn on my own these past 4 years. I only
wish I took the class back then. OSR continues to provide the best training experience we developers could
wish for."

Figure 6 Figure 5

http://www.osr.com/seminar_testimonials.html

Page 28

code, hit F5 to run it under the VS debugger, and step through

your code until you’re satisfied. You then end the debug

session and start working on your next piece of code.

Compare this to what happens when you’re a driver

developer. In this case, you already have an instance of

WinDBG running and attached to the target machine. In your

separate build environment, you build your driver and then

copy it over to the target. You then perform some manual

action on the target to load the new driver, possibly rebooting

or just disabling/enabling a device. When your new driver

loads, you set some breakpoints and step through the code.

Once you’re satisfied, you leave your debug session intact and

move back to your editor so that you can repeat the process.

Given this, what’s the issue? The trouble is that the VS IDE

was created for the user application scenario, not the device

driver scenario. Thus, while I’m attached to my target

machine within the VS IDE, the build options are disabled. In

order to build a new copy of the driver, I need to detach from

the target machine, build, and then re-attach to the target

machine. This is quite annoying, especially in the case where

the re-attach doesn’t work, which happened to me several

times while network debugging.

Hopefully this is something that’s addressed in the final

release. Otherwise, we’ll likely have to have two instances of

VS running or revert to using WinDBG as the kernel

debugger.

5. What it Means for the Future of WinDBG
While people like to bash it, WinDBG is truly an excellent,

lightweight tool for crash dump analysis. I just don’t ever see

myself saying that about VS, so I’d really hate to see

WinDBG fade into oblivion. Luckily it looks like we’ll have

WinDBG support with us at least through this release of

Windows, but the future beyond that is not clear at the

moment.

What Did We Miss?
We just know that we missed your least favorite thing about

the new kit, so let us know what it is!

(Continued from page 11)

Five Things to Not Like...

File System Development Kit

How’s this for a problem: our customers feel little
pressure to upgrade to new, functional releases of our
FSDK because it’s so stable. Now THAT’s a problem
we like to have.

If your commercial, file system-based solution
requires this same level of stability, why not consider
working with a codebase that has become the gold-
standard for successful implementations of Windows
file systems, and a company with the experience and
reputation to back it up.

Contact the OSR sales team at sales@osr.com to find
out more about the FSDK and how OSR can help you
achieve this same level of success with your FSD.

OSR USB FX2 Learning Kit

Don’t forget, the popular OSR USB FX2 Learning Kit
is available in the Store at www.osronline.com.

The board design is based on the well-known Cypress
Semiconductor USB FX2 chipset and is ideal for
learning how to write Windows device drivers in
general (and USB specifically of course!). Even better,
grab the sample WDF driver for this board, available
in the Windows Driver Kit (WDK).

http://www.osr.com/fsdk.html
mailto:sales@osr.com?subject=FSDK%20Interest
http://www.osronline.com

Page 29

When I made my next request, I knew I was pushing the

envelope. But I figured if I didn’t aim high, I’d probably

never get anything. So, I asked for:

I want real-time PFD [Prefast syntax checking] from

within the [VS] IDE. You call a function, and you get a

squiggly underline and a message saying you’re trying

to call it at the wrong IRQL. Ever use tools like

ReSharper from Jet Brains? Visual Assist by Whole

Tomato? I have, and they’re pretty freakin’ cool.

They provide real-time feedback on the code you write,

telling you all sorts of things about your usage.

So, I asked, if ReSharper can do it, why can’t we have the

same kind of analysis done in real-time by Prefast?

Apparently, the answer is that we can’t have it, at least not

yet. In fairness, I have no idea what type of effort would be

required to implement this feature. It’s a user-mode thing, so

I have no clue. And it is important to note that we did get a

pretty reasonable level of PFD integration in the Win8 WDK.

When you build your driver project, it can be set to

automagically run PFD from within the VS IDE and display

the warnings or errors. And this is pretty cool.

So, in terms of dynamic PFD integration within VS, let’s

say that I got 50% of what I asked for.

My penultimate request was for drivers that can do hardware

access from user-mode. I wrote:

[I want] drivers using interrupts and register access in

user mode. It is time to just bite the bullet and do this

work, folks. If I get the things I’ve asked for above, it is

beyond doubt that Windows drivers will be more

(Continued from page 5)

reliable. But we don’t just need reliability. We need to

limit the consequences of driver failure. To do that, we

need to be able to move all drivers (at least those that

are not necessary to boot the machine) to user mode.

I am very happy to say that, on this big and complicated

request, I got my wish! Or, at the very least, most of it.

UMDF does indeed support the ability to process interrupts

and do direct register access in user-mode. There are a few

restrictions, and some caveats (like, do you really want to

handle PCI level-triggered interrupts in your user-mode

driver?), but this very critical feature was implemented!

Thanks!

User-mode hardware access? I’d say I got 95% of what I

asked for. Yay!!

What’s a Christmas list without dreams, right? So, not being

content to limit my Christmas wish list to just things that were

possible within a reasonable timeframe, I just had to add one

final item. I asked for the ability to write Windows drivers in

C#:

I never liked C (I think it’s a terrible language). And

you’ve doubtless read my columns over the last year or

so talking all about how great it would be to write

drivers in C#. You want to really, seriously, eliminate

driver bugs? Do away with pool leaks, and memory

scribbles, and reference counting forever? Bring on

Windows drivers in C#.

I didn’t expect to get the ability to write Windows drivers

in C#, and I didn’t. But it’s nice to dream.

When you add everything up, where does that leave us? Were

my Christmas dreams fulfilled, or have I been left holding my

Christmas stocking, sadly disappointed?

Well, dreams are just that: Fantasies that could all come true

only in a perfect world. In our dreams, there are no

(Continued on page 30)

Peter Pontificates...

OSR’s DMK: “File and Folder” Encryption for Windows

Several commercially shipping products are a testament to the success of OSR’s most recent development toolkit,
the Data Modification Kit. With the hassle of developing transparent file encryption solutions for Windows on the
rise, why not work with a codebase and an industry-recognized company to implement your encryption or other
data-modifying file system solution?

Visit www.osr.com/dmk.html, and/or contact OSR: Phone: +1 603.595.6500 Email: sales@osr.com

http://www.osr.com/dmk.html
http://www.osr.com/dmk.html
mailto:sales@osr.com

Page 30

I just really wish they had done VS to sources ―round trip‖

conversion support. That’s the one thing that I’ll really miss.

As far as getting a dynamically revised KMDF, and a driver

model that spans user-mode and kernel-mode without

changes: I guess I’ll simply have to wait and hope.

There’s always Windows 9, right?

Peter Pontificates is a regular column by OSR
Consulting Partner, Peter Viscarola. Peter doesn’t care
if you agree or disagree, but you do have the
opportunity to see your comments or a rebuttal in a
future issue. Send your own comments, rants or
distortions of fact to PeterPont@osr.com.

constraints, no limits, to what we can obtain. However, in the

real world, one cannot wave a magic wand and make wishes

come true. Progress is often only attainable in incremental

steps.

Having our driver development environment fully integrated,

from code, to build, to sign, to deploy, to test, to debug – is a

level of integration that I didn’t even dare hope for two years

ago. The community has been asking for driver kit integration

with Visual Studio for years, and somebody finally tackled the

job, and it is here and it works! This is very obviously

outstanding work. Plus, we have the integrated ability to run

PFD within VS automatically.

And we got user-mode hardware access. This is epic, and it’s

critical to a more stable Windows in the future.

When I look at what we got, overall, in the Win8 WDK I’m

thrilled with what’s come to fruition. The Win8 WDK release

is the most dramatic and important release since the compiler

and linker were added to the DDK. It’s courageous, it’s

visionary. And I’m sure it’ll serve as the basis for all sorts of

new features in the future. The WDK team deserves a hearty

―well done‖ for their work on this project.

(Continued from page 29)

Peter Pontificates...

Windows File System Development

Whether developing file systems, file system mini-
filters, OSR’s Developing File Systems for Windows
seminar has proved year after year to be the most
effective way to get up to speed.

Visit the OSR website, where you can learn of the next
available offering or join the Seminar Update mailing
list to be advised when new seminar presentations are
scheduled.

Or, to communicate directly with our seminar
coordinator, send an email to seminars@osr.com or
call +1.603.595.6500.

What OSR Students Say

“It was an absolutely wonderful experience.
[Instructor] knows the subject matter thoroughly,
and can express the important points vividly and
in easy to associate contexts. He is a very
important player in the driver world, and made me
feel very much welcome to this select community.”

“My overall rating of the course was it was indeed
valuable. In fact, I don’t know how people would
go about creating file systems without taking the
course. I will recommend it to anyone that asks
about the course, including making it a
requirement for any co-workers at my company
that will be participating in our file system filter
driver.”

http://www.osr.com/fsd.html
http:/www.osr.com/fsd.html
mailto:seminars@osr.com?subject=Seminar%20interest
http://www.osr.com/seminar_testimonials.html

Page 31

Training

OSR training services consist of public and private
seminars on a variety of topics including Windows
internals, driver development, file system
development and debugging. Public seminar
presentations are scheduled and presented in a
variety of locations around the world, and
customized, private presentations are delivered to
corporate clients based on demand.

Toolkits

OSR software development toolkits provide
solutions that package stable, time-testing
technology, with support from an engineering staff
that has helped dozens of customers deliver
successful solutions to market.

Custom Development

At OSR, we're experts in Windows system
software: Windows device drivers, Windows file
systems, and most things related to Windows
internals. It’s all we do. As a result, most OSR
solutions can be proposed on a firm, fixed-price
basis. Clients will know the cost of a project phase
and deliverable dates before they have to make a
commitment.

Consulting

In consultative engagements, OSR works with
clients to determine needs and provide options to
proceed with OSR, or suggest alternative
solutions external to OSR. “Consulting" assistance
from OSR can be had in many forms, but no
matter how it is acquired, you can be assured that
we'll be bringing our definitive expertise, industry
experience, and solid reputation to bear on our
engagement with you.

More information on OSR products and services can be found at the www.osr.com.

OSR USB FX2 Learning Kit

Don’t forget, the popular OSR USB FX2 Learning Kit is available in the Store at www.osronline.com.

The board design is based on the well-known Cypress Semiconductor USB FX2 chipset and is ideal for learning
how to write Windows device drivers in general (and USB specifically of course!). Even better, grab the sample
WDF driver for this board, available in the Windows Driver Kit (WDK).

Peer Help?

Writing and debugging Windows system
software isn’t easy. Sometimes, connecting
with the right people at the right time can
make the difference. You’ll find them on
the NTDEV/NTFSD/WINDBG lists hosted
at OSR Online (www.osronline.com)

http://www.osr.com/seminars
http://www.osr.com/toolkits.html
http://www.osr.com/consulting.html
http://www.osr.com/consulting.html
http://www.osr.com
http://www.osronline.com
http://www.osronline.com
http://www.osronline.com/page.cfm?name=ListServer
http://www.osronline.com

Page 32

OSR OPEN SYSTEMS RESOURCES, INC.

105 State Route 101A, Suite 19

Amherst, New Hampshire 03031 USA

(603)595-6500 ♦ Fax (603)595-6503

The NT Insider™ is a subscription-based publication

New OSR Seminar Schedule!

Course outlines, pricing, and how to register, visit the www.osr.com/seminars!

Seminar Dates Location

Internals and Software Drivers (Lab) 17-21 October Boston/Waltham, MA

Kernel Debugging & Crash Analysis 14-18 November Columbia, MD

Writing WDM Drivers (Lab) 28 Nov—2 Dec Santa Clara, CA

Windows Internals for Forensic Analysts 26-29 September Columbia, MD

Subscribe to The NT Insider—Digital Edition

If you are new to The NT Insider (as in, the link to this issue was forwarded to you), you can subscribe at:
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

http://www.osr.com/seminars
http://www.osr.com/swdrivers.html
http://www.osr.com/debug.html
http://www.osr.com/wdm.html
http://www.osr.com/forensics.html
http://www.osronline.com/custom.cfm?name=login_joinok.cfm
http://www.osronline.com/custom.cfm?name=login_joinok.cfm

